1 research outputs found

    Analysis Of Measured Transport Properties Of Domain Walls In Magnetic Nanowires And Films

    Full text link
    Existing data for soft magnetic materials of critical current for domain-wall motion, wall speed driven by a magnetic field, and wall electrical resistance, show that all three observable properties are related through a single parameter: the wall mobility μ\mu. The reciprocal of μ\mu represents the strength of viscous friction between domain wall and conduction-electron gas. And μ\mu is a function of the wall width, which depends in turn on the aspect ratio t/w, where t and w are the thickness and width of the sample. Over four orders of magnitude of μ\mu, the data for nanowires show μ(t/w)2.2\mu\propto (t/w)^{-2.2}. This dependence is in approximate agreement with the prediction of the 1984 Berger theory based on s-d exchange. On the other hand, it is inconsistent with the prediction of the 2004 Tatara and Kohno theory, and of the 2004 Zhang and Li theory.Comment: 7 pages, 1 figure; submitted to Phys. Rev.
    corecore